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ABSTRACT - This paper presents a review focusing on the most current advancements in object detection techniques using 
YOLOv8 and their applications across a range of fields, such as surveillance systems, autonomous driving, smart agriculture, 
industrial quality control, and medical image analysis. YOLOv8, launched by Ultralytics in early 2023, represents the newest 
evolution of the You Only Look Once framework., YOLOv8 demonstrates notable improvements in both detection accuracy and 
processing speed compared to earlier versions. This review explores key updates in YOLOv8’s architecture, including enhanced 
backbone designs, efficient training processes, and optimized loss functions, alongside the incorporation of attention mechanisms 
and compact model structures. These findings from 40+ selected studies confirm YOLOv8’s potential as a reliable and efficient 
solution for object detection tasks in both academic research and real-world applications. This study serves as a comprehensive 
reference for researchers and practitioners seeking to optimize aiming to enhance YOLOv8-based models across diverse practical 
applications. 
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1. Introduction 

Object detection serves as a crucial pillar within the domain of computer vision, a highly active field of research 

with extensive applications spanning diverse sectors such as agriculture, remote sensing, intelligent traffic systems, and 

critical autonomous driving technologies, where comprehending the vehicle's environment through sensors is paramount 

[1]. Object detection is an essential and challenging problem in the field of computer vision that focuses on identifying 

and localizing instances of semantic objects of a certain class (such as people, cars, animals, or traffic signs) through 

digital image and video formats [1]. It plays a pivotal role in a wide range of practical applications, including intelligent 

surveillance systems, autonomous driving, smart farming, industrial automation, and medical diagnostics [2]. With the 

evolution of deep learning techniques, particularly convolutional neural networks (CNNs), the performance of object 

detection models has seen significant improvements in terms of both accuracy and speed [3]. However, one of the most 

persistent challenges in this domain is the detection of small objects, which are typically characterized by limited pixel 

coverage, low resolution, and high susceptibility to occlusion and background clutter. These issues are especially 

prominent in real-world scenarios such as remote sensing, medical imaging, and traffic surveillance, where critical small-

scale targets like tumors, distant pedestrians, or traffic signs must be accurately detected [4]. Moreover, as larger objects 

tend to dominate feature representations in convolutional networks, small object features are often suppressed during 

multi-scale aggregation processes, resulting in lower recall and precision rates. Consequently, small object detection has 

become a focal research area that demands more adaptive architectures, improved feature calibration, and multi-scale 

learning strategies [5]. 

Deep learning has played a transformative role in advancing object detection, particularly through the development 

of models like the You Only Look Once (YOLO) family. These models harness convolutional neural networks (CNNs) 

to directly learn spatial hierarchies and semantic features from raw image data, enabling the simultaneous localization 

and classification of objects with remarkable speed and accuracy [6]. YOLO reframes object detection as a single 

regression problem, allowing it to predict bounding boxes and class probabilities from full images in one unified step [7]. 

Since the original YOLO release, successive versions YOLOv2 through YOLOv7 have integrated deeper backbones, 

enhanced feature pyramid structures, and optimized training strategies that embody the growing sophistication of deep 

learning architectures [8]. The latest iteration, YOLOv8, released by Ultralytics in 2023, represents a major leap forward 

by adopting a more powerful backbone and head design, anchor-free detection mechanisms, and improved loss functions, 

all of which reflect the maturation of deep learning methodologies in the field [9][10]. Furthermore, YOLOv8 integrates 

flexible design principles that improve generalization across datasets and application domains, making it highly adaptable 

for real-time deployment [11]. 

Recent studies have demonstrated the role of deep learning innovations in enhancing YOLOv8’s capabilities, 

particularly in small object detection. For example, introduced SO-YOLOv8, which integrates attention mechanisms, 
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multi-scale training, and data augmentation to address the inherent challenges of detecting small and occluded objects. 

Similarly, applied YOLOv8 in combination with the DeepSORT tracking algorithm to develop an automated, real-time 

monitoring system for coral reefs, achieving high precision and robust multi-object tracking in underwater environments. 

These examples highlight that the ongoing evolution of YOLOv8 is inseparable from advancements in deep learning, 

especially in addressing complex detection scenarios involving size, motion, or occlusion. 

Despite its rapid uptake, there is currently no comprehensive study that systematically synthesizes the architecture, 

benchmark results, and practical deployments of YOLOv8 across various domains [12]. Existing research often isolates 

specific applications or provides limited comparative insights, making it challenging for practitioners to access an 

integrative understanding of the model’s strengths, weaknesses, and optimization pathways [13]. Additionally, with the 

growing volume of research proposing modifications to YOLOv8 for specific detection tasks, the need for a structured, 

up-to-date synthesis is becoming increasingly critical. 

To address this gap, this study presents a Systematic Literature Review (SLR) of YOLOv8-based object detection 

models, with a particular emphasis on the challenges and advancements in small object detection. The objectives of this 

review are fourfold. First, it aims to examine the architectural innovations introduced in YOLOv8 and evaluate how these 

improvements influence detection performance. Second, the study assesses YOLOv8’s effectiveness across various 

benchmark datasets using standard evaluation metrics, including precision, recall, F1-score, and mean Average Precision 

(mAP). Third, it summarizes the modifications and enhancements proposed by other researchers to optimize YOLOv8, 

particularly for scenarios involving small or occluded objects. Finally, this review analyzes the practical implementation 

of YOLOv8 across diverse application domains, such as UAV aerial imaging, smart agriculture, road infrastructure 

monitoring, forest fire detection, and medical imaging, thereby offering a comprehensive view of its real-world 

applicability and adaptability [14].  

The contributions of this review are as follows: 

a. This study provides a systematic and up-to-date synthesis of recent research utilizing YOLOv8 for object 

detection, with a particular focus on small object scenarios. 

b. It categorizes and compares architectural and training modifications proposed across studies, identifying key 

strategies for improving detection accuracy in challenging environments. 

c. It presents a critical analysis of YOLOv8’s performance across various datasets and domains, offering 

benchmarks that can inform future model design. 

d. It identifies current research gaps and provides practical recommendations for advancing small object detection 

using deep learning, particularly within the YOLOv8 framework. 

By offering a structured and comprehensive overview of YOLOv8’s state-of-the-art applications and research 

directions, this review aims to support developers, researchers, and practitioners in designing and deploying more accurate 

and efficient object detection systems. 

2. Related Works 

YOLOv8, launched by Ultralytics in early 2023, represents the newest evolution of the You Only Look Once 

(YOLO) framework, marking a significant advancement in object detection. It demonstrates notable improvements in 

both detection accuracy and processing speed compared to earlier versions, making it a reliable and efficient solution for 

various object detection tasks. This iteration adopts a more powerful backbone and head design, incorporates anchor-free 

detection mechanisms, and utilizes improved loss functions, reflecting the maturation of deep learning methodologies in 

the field. YOLOv8's flexible design principles also enhance its generalization across datasets and application domains, 

making it highly adaptable for real-time deployment [2]. 

The architecture of YOLOv8 comprises four main components: Input, Backbone, Neck, and Head. The Input 

section handles image preprocessing tasks like data augmentation, adaptive anchor calculation, and adaptive grayscale 

padding [4]. The Backbone and Neck modules form the core of the network; YOLOv8 employs a modified CSPDarknet53 

as its backbone, featuring the C2f module that improves upon YOLOv5's C3 module by combining high-level features 

with contextual information to enhance detection accuracy and gradient flow. Additionally, the Spatial Pyramid Pooling 

Fusion (SPPF) module integrates multiple max-pooling layers to merge feature maps, enabling the model to handle objects 

of various scales effectively. The Neck module fuses features extracted by the backbone across different resolutions, 

utilising a combination of Path Aggregation Network (PAN) and Feature Pyramid Network (FPN) to enhance feature 

integration and multi-scale representation [5]. The Head of YOLOv8 adopts a decoupled structure, separating object 

classification from localization tasks, each with its own loss function, and integrates the Task-Aligned Assigner for 

dynamic sample assignment, improving accuracy and robustness. Being an anchor-free model, it eliminates the need for 

predefined anchor boxes, simplifying training on diverse datasets, and is the first YOLO version to incorporate Soft-

NMS, which reduces false positives and negatives by preserving overlapping target information [3]. 

YOLOv8 and its enhanced variants have found widespread applications across diverse fields. In autonomous 

driving and traffic systems, it has been used for object detection in adverse weather, brake light status recognition, 



International Journal of Advanced Computing and Informatics, vol. 2, no.1, 2026, pp. 53 - 61 

 

  55 

pedestrian identification, and traffic sign detection. For UAV-based aerial imaging, it excels at detecting small-scale 

objects like other drones. In agriculture, applications include pest identification, disease detection, fruit recognition, and 

weed detection, contributing to precision farming [6]. Infrastructure inspection benefits from YOLOv8 in detecting road 

surface defects and structural cracks in dams and bridges. In the medical field, it aids in paediatric wrist fracture detection, 

elbow osteochondritis dissecans (OCD) identification, and tumour localization. Within manufacturing and industrial 

contexts, it's used for detecting defects in solar cells, flaws in 3D printing, bullet hole identification, and foreign objects 

in packaging. Lastly, in security and surveillance, YOLOv8 monitors smoking behaviour and performs multi-object 

tracking, such as fish movement analysis [7]. 

Despite its advancements, YOLOv8 faces several limitations. It often struggles with occlusion, scale variance, and 

abrupt changes in illumination, which can, with poor image resolution and varying annotation formats hindering 

performance evaluation [8]. degrade detection accuracy in complex environments. The quality and consistency of datasets 

also pose challenges. The inherent downsampling process can lead to the loss of crucial spatial information, particularly 

affecting small object detection. Distinguishing between visually similar objects also remains a challenge. Moreover, its 

relatively high computational requirements can make deployment difficult on edge devices or resource-constrained 

environments. Generalization across different object types, lighting conditions, and backgrounds can be limited, 

impacting its adaptability in diverse settings [9]. 

To address these limitations, researchers have proposed numerous modifications. For small object and occlusion 

detection, variants like YOLOv8-SnakeVision introduce Dynamic Snake Convolution and Context Aggregation Attention 

Mechanisms. DGW-YOLOv8 enhances the backbone with Deformable ConvNets v2 and global attention to reduce 

feature loss. UAV-YOLOv8 includes additional detection scales, and YOLOv8-MeY adds a larger detection layer. 

YOLO-SE incorporates a dedicated prediction head for small objects and a transformer-based detection head [10].  

Data augmentation techniques like Mosaic and MixUp, random brightness/contrast jittering, rotation, scale 

augmentations, CutMix, and elastic deformation have been widely adopted to bolster YOLOv8's robustness against 

occlusion, lighting variability, and object scale [11]. However, these traditional methods still have limitations, such as 

performance degradation under heavy occlusion or sensitivity to extreme illumination shifts [13]. 

Further research directions include developing lightweight GAN architectures to reduce computational demands 

and exploring self-supervised and weakly supervised training to alleviate the need for paired data. Adaptive training 

strategies that dynamically adjust to varying environmental conditions could bolster model robustness, and investigating 

transfer learning and domain adaptation techniques will be crucial for bridging the gap between synthetic and real data 

distributions [16]. For broader adoption and meaningful progress, establishing standardized evaluation protocols and 

unified benchmarking frameworks is imperative, as the current lack of consistency hinders fair comparisons across 

different GAN-enhanced detection models [17]. This standardization, particularly for evaluating fidelity, impact on 

accuracy, inference latency, and resource efficiency across various hardware configurations, will guide future 

development efforts and ensure the realisation of reliable, scalable, and high-performance GAN-powered object detection 

systems [18]. 

  

 

3. Methods  

Deep learning has emerged as a transformative approach in the domain of object detection, garnering substantial 

attention from the research community. This growing interest has led to a proliferation of survey studies that examine 

various methodological, architectural, and application-oriented aspects of object detection. While these reviews have 

significantly advanced our understanding of object detection techniques, they often generalize across multiple models 

and fail to provide a focused analysis of specific architectures.In particular, the distinctive role and technical 

advancements introduced by YOLOv8a recent evolution in the YOLO family have not been comprehensively addressed 

in existing literature. To bridge this gap, the present section conducts a focused literature review, aiming to position this 

study within the broader research context and to underscore its unique contributions. A comparative summary of prior 

surveys and their scope is presented in Table 1 to further clarify the novelty and relevance of this work. 

Table 1. Summary of relevant surveys 

 

Several recent surveys have concentrated on advancing one‑stage detection frameworks, particularly YOLOv8, by 

targeting domain‑specific challenges and architectural refinements. The scheme by Wang et al. [1] and Xiao and Feng [2] 

Reference Year Primary focus YOLOv8 Coverage Main Contribution 

[1] 2023 UAV Small‑Object Detection Extensive 
Lightweight head and UAV‑specific 

augmentations for small targets 

[2] 2023 Multi‑object pedestrian tracking Moderate 
Integration with OC‑SORT for improved 

trajectory stability 

[3] 2025 Real‑time video surveillance Moderate 
Added transformer‑attention module for 

cluttered/low‑light scenes 

[4] 2023 Classroom Behavior Recognition Limited 
Custom anchors and head fine‑tuning for 

pose‑based detection 

[5] 2023 Leaf‑Infection Region Segmentation Moderate 
Polygon‑box refinement layer for 

high‑precision masks 
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are exemplified this trend by augmenting the core YOLOv8 architecture for improved small‑object detection and 

multi‑object pedestrian tracking, respectively. Wang et al. applied a lightweight detection head and UAV‑specific data 

augmentations to boost mAP on aerial imagery, demonstrating extensive coverage of YOLOv8’s neck and head modules. 

In parallel, Xiao and Feng integrated YOLOv8’s detection outputs with the OC‑SORT tracker an approach characterized 

by moderate YOLOv8 coverage that yielded more stable real‑time trajectories under crowded conditions. Nimma et al. 

[3] further extended YOLOv8’s capabilities into real‑time video surveillance by embedding a transformer‑attention 

module into the feature‑fusion pipeline, striking a balance between detection accuracy and inference speed in low‑light 

and cluttered scenarios. 

Domain specific applications have also driven targeted YOLOv8 adaptations. Chen et al. [4] tackled classroom 

behavior recognition by fine tuning YOLOv8’s anchors and detection head to recognize student poses, a use case with 

limited coverage of only the head module but resulting in an 8% accuracy uplift at over 25 FPS. Meanwhile, Zhu et al. 

[5] addressed segmentation of pest infected leaf regions by layering a polygon-box refinement network atop YOLOv8’s 

segmentation branch, achieving mask precision up to 92%. These studies highlight how moderate to limited coverage of 

YOLOv8’s backbone, neck, or head modules can nonetheless deliver significant gains when customized for particular 

environments ranging from indoor behavior analysis to precision agriculture. 

Despite this progress, there remains a notable gap in comprehensive evaluations that compare the trade-offs among 

different levels of YOLOv8 architectural coverage backbone pruning, neck fusion strategies, attention modules and their 

impacts on both detection accuracy and computational efficiency across diverse application domains. Existing surveys 

tend to focus either on a single module’s enhancement or on a narrow set of use cases, without systematically mapping 

how each type of modification influences performance under varying operational constraints such as object scale, scene 

complexity, or real-time requirements. 

4. Results and Discussion 

The YOLOv8 architecture consists of four main components there is Input, Backbone, Neck, and Head. Input is 

part handles image preprocessing using operations such as data augmentation (e.g., mosaic augmentation), adaptive 

anchor calculation, and adaptive grayscale padding [15]. Tools like Roboflow are recommended for resizing and applying 

augmentations such as horizontal and vertical flips, cropping, grayscale transformation, brightness adjustment, blurring, 

rotations, shears, hue, saturation, exposure, noise, cutouts, and mosaics [16].  

The backbone and neck modules form the core of the YOLOv8 network. YOLOv8 employs a modified 

CSPDarknet53 as its backbone. The C2f module (Cross-Stage Partial Bottleneck with two convolutions) improves upon 

YOLOv5’s C3 module by combining high-level features with contextual information, enhancing detection accuracy and 

gradient flow [17]. At the end of the backbone, the Spatial Pyramid Pooling Fusion (SPPF) module integrates multiple 

max-pooling layers to merge feature maps, allowing the model to effectively handle objects of various scales [18]. The 

Neck module fuses features extracted by the backbone across different resolutions (large, medium, and small). YOLOv8 

uses a combination of Path Aggregation Network (PAN) and Feature Pyramid Network (FPN) to enhance feature 

integration and multi-scale representation [9].  

The Head of YOLOv8 adopts a decoupled head structure, separating object classification from localization tasks, 

each with its own loss function. For classification, Binary Cross-Entropy (BCE) loss is used, while bounding box 

regression uses Distribution Focal Loss (DFL) and CIoU loss. YOLOv8 also integrates the Task-Aligned Assigner for 

dynamic sample assignment, improving accuracy and robustness. As an anchor-free model, YOLOv8 eliminates the need 

for predefined anchor boxes, making it easier to train on various datasets. It is also the first YOLO version to incorporate 

Soft-NMS instead of traditional NMS, reducing false positives and negatives by preserving overlapping target 

information. 

To address the limitations of YOLOv8 and enhance its performance across various scenarios, researchers have 

proposed several modifications. For small object and occlusion detection, YOLOv8-SnakeVision introduces Dynamic 

Snake Convolution (DSConv) and Context Aggregation Attention Mechanisms (CAAM) to better capture complex 

shapes and focus on key image regions [8]. DGW-YOLOv8 enhances the backbone with Deformable ConvNets v2 and 

global attention to reduce feature loss and improve sensitivity to small objects [19]. UAV-YOLOv8 includes a Focal 

FasterNet Block (FFNB) and two additional detection scales, while YOLOv8-MeY adds a 160x160 pixel detection layer 

and integrates Global Attention (GA) [4]. YOLO-SE incorporates a dedicated prediction head for small objects and uses 

a transformer-based detection head [10]. DS-YOLOv8 integrates Deformable Convolution C2f (DCN_C2f) and Self-

Calibrating Shuffle Attention (SC_SA) for multi-scale feature learning. Another version, enhanced with MobileViT and 

GSConv, improves ship detection in complex and overlapping scenes [20]. 

In terms of loss function optimization, several studies replace the original CIoU loss with Wise-IoU (WIoU) to 

reduce the influence of low-quality samples and improve regression accuracy [10]. YOLOv8-CGRNet applies WIoU in 

anchor-free contexts, while YOLOv8-MNC uses Normalized Wasserstein Distance (NWD) Loss to improve the detection 

of small objects [8]. For efficiency and lightweight improvements, BL-YOLOv8 redesigns the neck with BiFPN and 

integrates SimSPPF and LSK-attention to reduce model size and computation [15]. YOLOv8-CGRNet combines CGNet 

and Res2Net to enable deeper feature learning without increasing complexity [21]. LCA-YOLOv8-Seg proposes a 
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lightweight backbone and an efficient prototype mask branch, and YOLO-SE employs SEConv along with Efficient 

Multi-Scale Attention (EMA) for faster detection [10].  

General improvements include the use of multi-head self-attention (MHSA) and CARAFE up sampling in 

YOLOv8-MNC, and a multi-object pedestrian tracking version that incorporates soft-NMS, GhostConv, and C3Ghost 

modules. DC-YOLOv8 introduces a new down sampling strategy and an enhanced fusion structure, while a version 

tailored for bullet hole detection uses soft-NMS to better retain information about overlapping objects [22]. 

YOLOv8 and its enhanced variants have been widely applied across diverse fields, demonstrating their versatility 

and effectiveness in real-world scenarios. In autonomous driving and traffic systems, YOLOv8 has been utilized for object 

detection under adverse weather conditions, brake light status recognition, pedestrian identification, and traffic sign 

detection [23]. In the domain of UAV-based aerial imaging, it has shown strong performance in detecting small-scale 

objects, including other drones [24]. In agriculture, applications include pest identification, disease detection in wheat 

and maize leaves, fruit recognition, and weed detection, all of which contribute to precision farming practices [25].  

For infrastructure inspection, YOLOv8 has been applied in detecting road surface defects, structural cracks in 

dams and bridges, and insulator recognition [19]. In the medical field, it has supported diagnostic efforts through pediatric 

wrist fracture detection via X-ray, elbow osteochondritis dissecans (OCD) identification using ultrasound, and tumor 

localization [26]. Within manufacturing and industrial contexts, the model has been used for detecting defects in solar 

cells, flaws in FDM 3D printing, bullet hole identification, and the detection of foreign objects in packaging processes 

[27]. Lastly, in the field of security and surveillance, YOLOv8 has been adopted for monitoring smoking behavior and 

performing multi-object tracking, such as in fish movement analysis [28]. 

Despite significant advancements, YOLOv8 and its variants continue to face several limitations and challenges. 

The model often struggles with occlusion, scale variance, and abrupt changes in illumination, which can degrade detection 

accuracy in complex environments [9]. The quality and consistency of datasets, including poor image resolution and 

varying annotation formats, further hinder reliable performance evaluation and comparison across studies. Additionally, 

the presence of rare or underrepresented objects within datasets can disproportionately affect accuracy metrics, leading 

to biased results [16]. 

The inherent down sampling process in the architecture also results in the loss of crucial spatial information, 

particularly impacting the detection of small objects. Distinguishing between visually similar objects such as buses and 

trains remains a challenge due to limited feature differentiation [27]. Moreover, YOLOv8’s relatively high computational 

requirements pose difficulties for deployment in edge devices or resource-constrained environments. Generalization 

across different fruit types, lighting conditions, and backgrounds also remains limited, reducing the model’s adaptability 

in diverse agricultural settings [25]. Lastly, the detection of feature-sparse objects, such as bicycles in cluttered scenes, 

continues to be an area in need of further improvement [4]. 

These studies collectively highlight the substantial progress achieved in the development and application of data 

augmentation techniques tailored for YOLOv8-based object detection systems. These advancements have been 

instrumental in overcoming common challenges such as limited labelled data, class imbalance, and insufficient 

representation of edge cases in training datasets. By generating diverse and realistic synthetic samples, these augmentation 

strategies have significantly improved the generalization capabilities of detection models, enabling more robust 

performance across a wide spectrum of real-world scenarios.  

Moreover, the integration of controllable augmentation methods such as those involving GAN-generated imagery, 

geometric transformations, and contextual variations has allowed for more precise manipulation of image attributes, 

further enhancing training efficacy. YOLOv8, with its flexibility and high performance, has served as an effective 

backbone for exploring and implementing these advanced augmentation techniques. To offer a structured comparison of 

their effectiveness, Table 2 provides a summary of key performance metrics as reported across the reviewed studies, 

facilitating a clearer understanding of each method’s contributions and relative advantages. 

Table 2. Performance summary of YOLOv8 based data augmentation methods for object detection 

Ref Method Dataset 
Results 

Drawbacks 
mAP (%) F1-score (%) 

[6] 
Mosaic + MixUp 

augmentations 

Field-crop pest images (self-

collected) 
89.2 91.0 

Performance drops 

under heavy occlusion 

and clutter 

[10] 
Random brightness/contrast 

jittering 

In-vehicle interior seat-belt 

dataset 
94.5 95.3 

Sensitive to extreme 

lighting changes 

[11] 
Rotation + Scale 

augmentations 

Eucalypt timber stacks 

(Forest’s F14122369) 
92.8 93.5 

Overlapping logs still 

cause undercounting 

[17] CutMix + Elastic deformation 
Dam & bridge crack imagery 

(Appl. Sci.) 
90.4 88.2 

Very fine hairline cracks 
remain challenging 

[23] 
Random crop + Photometric 

distortions 
Tiny UAV targets 

(Electronics12173664) 
85.7 87.0 

Higher false-positive 

rate on complex 

backgrounds 
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Data augmentation has been widely adopted to bolster YOLOv8’s robustness against common real-world 

challenges occlusion, lighting variability, object scale, and background complexity yet each technique exhibits its own 

limitations. The scheme by Khalid et al. [6] is combined Mosaic and MixUp augmentations on field-crop pest images to 

improve the detector’s ability to recognize partially hidden insects within cluttered foliage. While this “extensive 

composition” strategy pushed mAP to 89.2% and F1-score to 91.0%, performance still degraded under heavy occlusion 

and extreme plant overlap. The scheme by Sutikno et al. [10] is addressed in-vehicle lighting variation by applying random 

brightness and contrast jittering during training, yielding a strong 94.5% mAP and 95.3% F1. However, their method 

proved sensitive to extreme illumination shifts such as direct sunlight or deep shadows resulting in occasional false 

negatives. 

Rotation and scale augmentations, as used by Casas et al. [11] on eucalyptus-timber stacks, improved viewpoint 

invariance and increased mAP to 92.8% (F1 93.5%), yet overlapping logs continued to confound the network’s count 

accuracy. The scheme Wu et al. [17] is applied CutMix and elastic deformation to enhance YOLOv8-Seg’s crack detection 

on dam and bridge imagery, achieving 90.4% mAP, but very fine “hairline” fractures remained largely undetected. 

Finally, Zhai et al. [23] employed random cropping and photometric distortions to help YOLOv8 localize sub-5 px UAV 

targets in complex backgrounds, boosting recall to 85.7% and F1-score value of  87.0%. This approach, however, 

exhibited a higher false-positive rate when scenes contained textured clutter that mimicked target appearance. 

Taken together, these studies demonstrate that traditional geometric and photometric augmentations can 

substantially improve YOLOv8’s resilience to occlusion, scale variation, and lighting changes but none fully eliminate 

the remaining edge-case failures. Future work should explore adaptive, content-aware augmentation pipelines (e.g., GAN-

driven synthesis of occluded or ultra-small objects) and domain-specific strategies that target the most problematic scene 

elements to close the gap toward truly robust, real-time object detection. Table 3 provides the performance summary of 

YOLOv8 -based methods for handling occlusions in object detection 

Table 3. Performance summary of YOLOv8 -based methods for handling occlusions in object detection 
Ref Method Dataset Result Drawbacks 

[7] 
YOLOv8-SnakeVision (boundary 

refinement) 

ITS traffic sign & vehicle 

set 

mAP 78.4%, F1-

score 80.1% 

Recall drops sharply under heavy traffic 

occlusion 

[12] 
Cross-Layer Feature Fusion + 

Channel Attention 

Cityscapes pedestrian 

subset 

mAP 81.2%, F1-

score 82.5% 

Substantially increased inference time (×1.8 

slower) 

[18] 
DGW-YOLOv8 (deformable-

attention backbone) 

Power-line insulator 

dataset 

mAP 93.1%, F1-

score 92.7% 

Difficulty distinguishing insulators against 

similar-color backgrounds 

[20] 
YOLOv8-CGRNet (context 

guidance & residual paths) 

COCO “person” 

occlusion subset 

mAP 40.5%, F1-

score 42.0% 

Performance degrades when >50% of object 

is occluded 

[27] 
YO-BYNet (BYTE association for 

tracking) 
Aquaculture fish-tracking 

videos 
mAP 75.3%, F1-

score 76.0% 
Overlapping fish still cause ID swaps under 

heavy overlap 

Occlusion remains one of the most persistent and challenging obstacles in the field of real time object detection. 

In many practical scenarios, objects of interest may be partially or fully hidden behind other objects or environmental 

elements, making them difficult to detect with high confidence. This issue becomes particularly critical in dynamic and 

unstructured environments where the visibility of objects can vary unpredictably due to movement, crowding, or 

environmental clutter. Even the most advanced detection models, including those based on the latest YOLOv8 

architecture, are susceptible to performance degradation under occluded conditions, leading to missed detections, false 

negatives, and reduced detection accuracy. 

 These shortcomings are especially problematic in safety-critical domains such as autonomous driving where 

failing to detect a pedestrian or another vehicle can have life threatening consequences as well as in surveillance systems, 

where accurate object tracking and threat recognition are essential, and in industrial monitoring, where missed detections 

can compromise operational integrity and safety. Addressing occlusion effectively requires not only more sophisticated 

network architectures but also improved data augmentation techniques, attention mechanisms, and the integration of 

temporal or contextual information from surrounding frames or scenes. Therefore, the development and integration of 

robust occlusion-handling strategies are crucial to enhancing the reliability and applicability of YOLOv8-based object 

detection systems across a diverse range of real-world deployment scenarios. 

Liu et al. [7] introduced YOLOv8-SnakeVision, which appends a boundary-refinement module to standard 

YOLOv8 outputs. Evaluated on an ITS traffic sign and vehicle dataset, this approach achieved a mAP of 78.4% and F1-

score of 80.1%. However, recall dropped sharply under heavy traffic occlusion, indicating that boundary refinement alone 

is insufficient when multiple objects overlap extensively. 

Chuai et al. [12] proposed a cross-layer feature fusion combined with channel-attention mechanism to strengthen 

pedestrian detection in crowded scenes. On the Cityscapes pedestrian subset, their method lifted mAP to 81.2% and F1-

score to 82.5%, yet inference time increased by 80% compared to vanilla YOLOv8, highlighting a trade-off between 

occlusion robustness and real-time efficiency. 

Hu et al. [18] developed DGW-YOLOv8 by integrating a deformable-attention backbone and a WIoU loss to 

detect small insulators in power-line imagery. This yielded a high mAP of 93.1% and F1-score of 92.7%, but the model 
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struggled to distinguish insulators from similarly colored background components, revealing limitations in color-based 

feature separation under occlusion.  

Niu et al. [20] presented YOLOv8-CGRNet, which leverages context guidance and deep residual paths to detect 

partially occluded “person” instances in COCO. Their system recorded a mAP of 40.5% and F1-score of 42.0% on an 

occlusion-challenging subset, with performance degrading precipitously when over 50% of the object area was obscured.  

Tong et al. [27] combined YOLOv8 with BYTE association into YO-BYNet for multi-object fish tracking under 

overlap in aquaculture video. Evaluated on fish-tracking sequences, the method achieved a mAP of 75.3% and F1-score 

of 76.0%, but identity swaps persisted when fish clustered tightly, indicating that temporal association alone cannot fully 

resolve severe occlusions. Table 4 provides the performance summary of YOLOv8-based methods for small object 

detection. 

Tabel 4. Performance summary of YOLOv8-based methods for small object detection 
Ref Method Dataset Performance Drawbacks 

[8] 
DC-YOLOv8 (dual-channel feature 

fusion) 

Camera sensor small-

object benchmark¹ 

mAP 87.5%, F1-

score 86.2% 

Added fusion increases model size and 

slows inference by ~25% 

[9] 
YOLO-SE (Squeeze-and-Excitation 

blocks) 

Remote-sensing object 

dataset² 

mAP 90.3%, F1-

score 89.7% 

SE blocks incur extra computation, 

reducing real-time throughput 

[12] 
Cross-layer feature fusion + channel 

attention 
Cityscapes small-object 

subset³ 
mAP 81.2%, F1-

score 82.5% 
Inference time ~1.8× slower than 

baseline YOLOv8 

[19] 
DS-YOLOv8 (depthwise split + 

lightweight modules) 

Remote-sensing images 

(IEEE Access)⁴ 

mAP 91.0%, F1-

score 90.4% 

Performance degrades on extremely 

dense target clusters 

[24] 
YOLOv8-fruit (single-stage detector 

tuning) 

Horticultural fruit 

dataset⁵ 

mAP 92.1%, F1-

score 91.8% 

Confusion arises between similar-

colored fruits and foliage 

Table 4 is shown the notable progress in integrating GAN‑based modules with YOLOv8 for enhanced object 

detection, several critical limitations persist that demand attention. First, the computational complexity and resource 

requirements of GANs especially those with high‑resolution generators or deformable‑attention backbones remain 

prohibitive. 

 Training these networks alongside YOLOv8 detection pipelines requires extensive GPU memory and prolonged 
training times, which impedes real‑time inference and limits deployment on resource‑constrained devices. Moreover, 

training stability and convergence issues such as mode collapse and vanishing gradients continue to plague GAN 

implementations, necessitating careful hyperparameter tuning and architectural balancing between generator and 

discriminator networks. 

Second, data dependencies and generalization challenges present a significant barrier. Many current approaches 

rely on paired or richly annotated datasets (e.g., clean versus occluded or low‑ versus high‑resolution image pairs), which 

are expensive and time‑consuming to collect at scale. Synthetic examples generated by GANs, while useful for data 

augmentation, often fail to capture the full diversity of real‑world scenes leading to performance degradation when models 

face domain shifts in lighting, weather, or background complexity. 

Third, performance disparities remain across different detection tasks. While GAN‑driven augmentations can 

boost YOLOv8’s robustness to small objects and occlusions, accuracy for large or densely clustered objects still lags. 

Additionally, integration challenges namely, balancing image enhancement quality with detection latency are unresolved; 

many GAN‑augmented pipelines increase inference time by 50 % or more, undermining YOLOv8’s real‑time capabilities. 

Looking ahead, several architectural and methodological innovations could address these limitations. Developing 

lightweight GAN architectures for example, by merging efficient convolutional blocks with transformer attention or 

multi‑task heads can reduce resource demands while preserving enhancement quality. Advancements in self‑supervised 

and weakly supervised training may alleviate the need for paired data, and adaptive training strategies that dynamically 

adjust to varying environmental conditions (e.g., low light, fog, heavy occlusion) could bolster model robustness. 

Investigating transfer learning and domain adaptation techniques will also be crucial for bridging the gap between 

synthetic and real data distributions. 

Finally, to facilitate broader adoption and ensure meaningful progress in the integration of Generative Adversarial 

Networks (GANs) with YOLOv8-based object detection systems, it is imperative for the research community to establish 

standardized evaluation protocols and unified benchmarking frameworks. Currently, the lack of consistency in evaluation 

methods and the diversity of datasets, metrics, and experimental setups hinder the ability to conduct fair comparisons 

across different GAN enhanced detection models. This fragmentation not only slows down collaborative advancements 

but also obscures the identification of truly effective architectural innovations and training strategies.  

A comprehensive benchmarking framework should incorporate multi-dimensional evaluation metrics that assess 

not only the fidelity and realism of GAN-generated enhancement such as super resolution or synthetic object generation 

but also their direct impact on object detection accuracy, robustness under occlusion, inference latency, and resource 

efficiency across various hardware configurations. Such an integrated evaluation approach is particularly important given 

the growing interest in deploying these systems in real-world, resource-constrained environments such as edge devices, 

autonomous systems, and embedded platforms. By aligning the research community around shared standards and 

reproducible evaluation pipelines, these benchmarks will serve as a critical foundation for identifying best practices, 
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validating methodological improvements, and guiding future development efforts. Ultimately, this standardization is 

essential to the realization of reliable, scalable, and high-performance GAN-powered object detection systems capable of 

meeting the demands of practical deployment across diverse application domains. 

5. Conclusions 

YOLOv8 has established itself as a state-of-the-art object detection model, offering substantial improvements in 

both speed and accuracy over its predecessors in the YOLO family. These advancements are driven by a series of 

architectural enhancements, including decoupled detection heads, anchor-free design, optimized loss functions, and the 

incorporation of attention mechanisms that enhance the model’s ability to localize and classify objects more precisely. 

Such refinements have enabled YOLOv8 to achieve superior performance across a wide range of domains, from 

autonomous driving and aerial surveillance to industrial inspection and healthcare imaging. However, challenges persist 

particularly in detecting small, heavily occluded, or low-texture objects, which can compromise detection accuracy in 

complex real-world environments. Additionally, the generalizability of the model remains constrained by the quality and 

diversity of training datasets, and deploying YOLOv8 on resource-limited platforms introduces further considerations 

related to computational efficiency and latency. Despite these limitations, ongoing research continues to enhance the 

model's capabilities through lighter backbones, domain adaptation techniques, and improved data augmentation strategies, 

underscoring YOLOv8’s strong potential as a reliable and efficient solution for real-time object detection in diverse and 

demanding applications. 
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